32 research outputs found

    Negotiating left-hand and right-hand bends: a motorcycle simulator study to investigate experiential and behaviour differences across rider groups

    Get PDF
    Why do motorcyclists crash on bends? To address this question we examined the riding styles of three groups of motorcyclists on a motorcycle simulator. Novice, experienced and advanced motorcyclists navigated a series of combined left and right bends while their speed and lane position were recorded. Each rider encountered an unexpected hazard on both a left- and right-hand bend section. Upon seeing the hazards, all riders decreased their speed before steering to avoid the hazard. Experienced riders tended to follow more of a racing line through the bends, which resulted in them having to make the most severe changes to their position to avoid a collision. Advanced riders adopted the safest road positions, choosing a position which offered greater visibility through the bends. As a result, they did not need to alter their road position in response to the hazard. Novice riders adopted similar road positions to experienced riders on the left-hand bends, but their road positions were more similar to advanced riders on right-hand bends, suggesting that they were more aware of the risks associated with right bends. Novice riders also adopted a safer position on post-hazard bends whilst the experienced riders failed to alter their behaviour even though they had performed the greatest evasive manoeuvre in response to the hazards. Advanced riders did not need to alter their position as their approach to the bends was already optimal. The results suggest that non-advanced riders were more likely to choose an inappropriate lane position than an inappropriate speed when entering a bend. Furthermore, the findings support the theory that expertise is achieved as a result of relearning, with advanced training overriding ‘bad habits’ gained through experience alone

    The role of experience and advanced training on performance in a motorcycle simulator

    Get PDF
    Motorcyclists are over-represented in collision statistics. While many collisions may be the direct fault of another road user, a considerable number of fatalities and injuries are due to the actions of the rider. While increased riding experience may improve skills, advanced training courses may be required to evoke the safest riding behaviours. The current research assessed the impact of experience and advanced training on rider behaviour using a motorcycle simulator. Novice riders, experienced riders and riders with advanced training traversed a virtual world through varying speed limits and roadways of different curvature. Speed and lane position were monitored. In a comparison of 60 mph and 40 mph zones, advanced riders rode more slowly in the 40 mph zones, and had greater variation in lane position than the other two groups. In the 60 mph zones, both advanced and experienced riders had greater lane variation than novices. Across the whole ride, novices tended to position themselves closer to the kerb. In a second analysis across four classifications of curvature (straight, slight, medium, tight) advanced and experienced riders varied their lateral position more so than novices, though advanced riders had greater variation in lane position than even experienced riders in some conditions. The results suggest that experience and advanced training lead to changes in behaviour compared to novice riders which can be interpreted as having a potentially positive impact on road safety

    Cross-cultural effects on drivers' hazard perception

    Get PDF
    Hazard perception tests are used in several developed countries as part of the driver licensing curriculum, however little research has been done in developing countries where road safety is a primary concern. We conducted a cross-cultural hazard perception study to examine the transferability of hazard perception skills between Malaysia and the UK, using hazard clips filmed in both countries. The results showed that familiarity with both the driving environment and type of hazard facilitated drivers' ability to discriminate hazards in a timely manner, although overall drivers viewed and responded to hazards largely similarly regardless of origin. Visual strategies also appeared to be moderated mainly by the immediate driving environment rather than driver origin. Finally, Malaysian drivers required a higher threshold of danger than UK drivers before they would identify a situation as hazardous, possibly reflecting the more hazardous road environment in Malaysia. We suggest that hazard perception testing in developing countries requires a test where performance cannot be confounded with differing thresholds for hazardousness

    A predictive hazard perception paradigm differentiates driving experience cross-culturally

    Get PDF
    Hazard perception (HP) tests are used in several developed countries as part of the driver licensing process, where they are believed to have improved road safety; however, relatively little HP research has been conducted in developing countries, which account for 80% of the world’s road fatalities. Previous research suggests that drivers in these countries may be desensitized to hazardous road situations and thus have increased response latencies to hazards, creating validity issues with the typical HP reaction time paradigm. The present study compared Malaysian and UK drivers’ HP skills when watching video clips filmed in both countries, using a predictive paradigm where hazard criterion could not affect performance. Clips filmed in the UK successfully differentiated experience in participants from both countries, however there was no such differentiation in the Malaysian set of videos. Malaysian drivers also predicted hazards less accurately overall, indicating that exposure to a greater number of hazards on Malaysian roads did not have a positive effect on participants’ predictive hazard perception skill. Nonetheless the experiential discrimination noted in this predictive paradigm may provide a practical alternative for hazard perception testing in developing countries

    Employing consumer electronic devices in physiological and emotional evaluation of common driving activities

    Get PDF
    It is important to equip future vehicles with an on-board system capable of tracking and analysing driver state in real-time in order to mitigate the risk of human error occurrence in manual or semi-autonomous driving. This study aims to provide some supporting evidence for adoption of consumer grade electronic devices in driver state monitoring. The study adopted repeated measure design and was performed in high- fidelity driving simulator. Total of 39 participants of mixed age and gender have taken part in the user trials. The mobile application was developed to demonstrate how a mobile device can act as a host for a driver state monitoring system, support connectivity, synchronisation, and storage of driver state related measures from multiple devices. The results of this study showed that multiple physiological measures, sourced from consumer grade electronic devices, can be used to successfully distinguish task complexities across common driving activities. For instance, galvanic skin response and some heart rate derivatives were found to be correlated to overall subjective workload ratings. Furthermore, emotions were captured and showed to be affected by extreme driving situations

    Evaluating secondary input devices to support an automotive touchscreen HMI: a cross-cultural simulator study conducted in the UK and China

    Get PDF
    Touchscreen Human-Machine Interfaces (HMIs) are a well-established and popular choice to provide the primary control interface between driver and vehicle, yet inherently demand some visual attention. Employing a secondary device with the touchscreen may reduce the demand but there is some debate about which device is most suitable, with current manufacturers favouring different solutions and applying these internationally. We present an empirical driving simulator study, conducted in the UK and China, in which 48 participants undertook typical in-vehicle tasks utilising either a touchscreen, rotary-controller, steering-wheel-controls or touchpad. In both the UK and China, the touchscreen was the most preferred/least demanding to use, and the touchpad least preferred/most demanding, whereas the rotary-controller was generally favoured by UK drivers and steering-wheel-controls were more popular in China. Chinese drivers were more excited by the novelty of the technology, and spent more time attending to the devices while driving, leading to an increase in off-road glance time and a corresponding detriment to vehicle control. Even so, Chinese drivers rated devices as easier-to-use while driving, and felt that they interfered less with their driving performance, compared to their UK counterparts. Results suggest that the most effective solution (to maximise performance/acceptance, while minimising visual demand) is to maintain the touchscreen as the primary control interface (e.g. for top-level tasks), and supplement this with a secondary device that is only enabled for certain actions; moreover, different devices may be employed in different cultural markets. Further work is required to explore these recommendations in greater depth (e.g. during extended or real-world testing), and to validate the findings and approach in other cultural contexts

    Towards hybrid driver state monitoring : review, future perspectives and the role of consumer electronics

    Get PDF
    The purpose of this paper is to bring together multiple literature sources which present innovative methodologies for the assessment of driver state, driving context and performance by means of technology within a vehicle and consumer electronic devices. It also provides an overview of ongoing research and trends in the area of driver state monitoring. As part of this review a model of a hybrid driver state monitoring system is proposed. The model incorporates technology within a vehicle and multiple broughtin devices for enhanced validity and reliability of recorded data. Additionally, the model draws upon requirement of data fusion in order to generate unified driver state indicator(-s) that could be used to modify in-vehicle information and safety systems hence, make them driver state adaptable. Such modification could help to reach optimal driving performance in a particular driving situation. To conclude, we discuss the advantages of integrating hybrid driver state monitoring system into a vehicle and suggest future areas of research

    JLR heart : employing wearable technology in non-intrusive driver state monitoring. Preliminary study

    Get PDF
    This paper presents the results from a preliminary study where a wearable consumer electronic device was used to assess driver’s state by capturing human physiological response in non-intrusive manner. Majority of state of the art studies have employed medical equipment drivers’ state evaluation. Despite the potential gain in road safety this method of measuring physiology is unlikely to be accepted by private vehicle consumers due to its invasiveness, complexity, and high cost. This study was aiming to investigate possibility of employing a consumer grade wearable device to measure physiological parameters related to cognitive workload in realtime while driving i.e., drivers’ heart rate. Furthermore, validity of captured heart activity metrics was analyzed to determine if wearable devices could be embedded into driving at its current technological state. The driving context was reproduced in desktop driving simulator, with 14 participants agreeing to take part in the study (µ = 28, σ = 8.5 years). Drivers were exposed to various road types, including pure Motorway, Rural, and Urban scenario modes. An accident was simulated in order to generate sudden cognitive arousal and capture participants’ physiological response to the generated distress. It was found that a smartwatch is capable of reliable heart activity tracking in driving context. The results, supporting the relationship between cognitive workload level, generated by various complexity driving tasks, and Heart Rate Variability, were also presented

    A driving simulator study to explore the effects of text size on the visual demand of in-vehicle displays

    Get PDF
    Modern vehicles increasingly utilise a large display within the centre console, often with touchscreen capability, to enable access to a wide range of driving and non-driving-related functionality. The text provided on such displays can vary considerably in size, yet little is known about the effects of different text dimensions on how drivers visually sample the interface while driving and the potential implications for driving performance and user acceptance. A study is described in which sixteen people drove motorway routes in a medium-fidelity simulator and were asked to read text of varying sizes (9 mm, 8 mm, 6.5 mm, 5 mm, or 4 mm) from a central in-vehicle display. Pseudo-text was used as a stimulus to ensure that participants scanned the text in a consistent fashion that was unaffected by comprehension. There was no evidence of an effect of text size on the total time spent glancing at the display, but significant differences arose regarding how glances were distributed. Specifically, larger text sizes were associated with a high number of relatively short glances, whereas smaller text led to a smaller number of long glances. No differences were found in driving performance measures (speed, lateral lane position). Drivers overwhelmingly preferred the ‘compromise’ text sizes (6.5 mm and 8 mm). Results are discussed in relation to the development of large touchscreens within vehicles

    Developing predictive equations to model the visual demand of in-vehicle touchscreen HMIs

    Get PDF
    Touchscreen HMIs are commonly employed as the primary control interface and touch-point of vehicles. However, there has been very little theoretical work to model the demand associated with such devices in the automotive domain. Instead, touchscreen HMIs intended for deployment within vehicles tend to undergo time-consuming and expensive empirical testing and user trials, typically requiring fully-functioning prototypes, test rigs and extensive experimental protocols. While such testing is invaluable and must remain within the normal design/development cycle, there are clear benefits, both fiscal and practical, to the theoretical modelling of human performance. We describe the development of a preliminary model of human performance that makes a priori predictions of the visual demand (total glance time, number of glances and mean glance duration) elicited by in-vehicle touchscreen HMI designs, when used concurrently with driving. The model incorporates information theoretic components based on Hick-Hyman Law decision/search time and Fitts’ Law pointing time, and considers anticipation afforded by structuring and repeated exposure to an interface. Encouraging validation results, obtained by applying the model to a real-world prototype touchscreen HMI, suggest that it may provide an effective design and evaluation tool, capable of making valuable predictions regarding the limits of visual demand/performance associated with in-vehicle HMIs, much earlier in the design cycle than traditional design evaluation techniques. Further validation work is required to explore the behaviour associated with more complex tasks requiring multiple screen interactions, as well as other HMI design elements and interaction techniques. Results are discussed in the context of facilitating the design of in-vehicle touchscreen HMI to minimise visual demand
    corecore